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-of Pharmacometrics

* George Box wrote that "essentially, all models
are wrong, but some are useful" (in Empirical
Model-Building and Response Surfaces, Wiley,
1987)

* Essentially, models account for fixed effects
(structural components like drug clearance or
EDso) and random effects (between subject
variability, residual variability), but biological
systems are very complex



_d Drug Development (MBDD)

* Simply stated, MBDD is the development and
application of models that help inform decision
making (Lalonde et. al, CPT, 82, 21-32, 2007)

— clinical and pre-clinical data
— all phases of drug development

e Consistent with “learn and confirm” concepts, as
originally stated by Sheiner (CPT, 61:275, 1997)

— the “learn” phase occurs during early drug
development (Phase 1 and 2), identifying appropriate
therapeutic doses

— the “confirm” phase occurs in later drug development
(Phase 3), demonstrating acceptable safety and
efficacy

— MBDD applicable in this cycle, identifying dose-
exposure relationship, effect size and uncertainty,
shape of dose-response relationship, rational dose for
intended use
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[ MBDD - Examples

* Many applications of MBDD are focused on
modeling efforts with population approaches, to
include...

— pharmacokinetic (PK) analysis to identify relevant patient-
specific information (covariates) that also describes
between subject variability in parameters of interest

— pharmacodynamic (PD) analysis that describes relationship
between safety/efficacy endpoints and dose or exposure
(PKPD)

— model-based meta analysis (MBMA) of published literature
data to help understand relevant effect size, useful for
positioning a compound in development into the
completive landscape

* Advantageous to perform longitudinal PD analysis
over landmark analysis, as all data over study period
contributes to better understanding of disease
progression and treatment effects
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[ IMBDD - core Elements

PKPD and Disease Models

— describe temporal relationships between dose (exposure) and
response

Meta Analysis of Competitor Data

— estimation of effect size and uncertainty from published
aggregate study level) data

Design and Trial Execution Models

— implementation of adaptive design models for dosing and drop-
out/compliance models

Data Analysis Models
— prospectively defined statistical analysis models

Quantitative Decision Criteria

— rules applied to distribution of expected treatment effect, i.e.,
80% confidence that the true effect > lower confidence value

Trial Performance Metrics

— probability of making a “correct” decision, irrespective of decision
with a “go” or “no go” result



| Model Building

* Let data drive complexity of model

— PK: one compartment disposition with linear
elimination and input, progress to multi-
compartment disposition and complex absorption
processes as necessary

— PD: step change, linear and nonlinear drug effect

* Fixed effects (CL, Emax, EDso0) and random effects
(between subject and residual variability)

e At each step, more complex model tested for
significant benefit in predictive performance

* Test final model performance with visual predictive
check (simulation), bootstrap confidence intervals



-trics Applications

* Models used can be quite simplistic as in
most population PK applications, trending
towards quite complex for systems
biology/pharmacology applications

— Translational model to help understand potential
dose limitations in first in human trials

— Systems model to better understand beta
amyeloid (Abeta) trafficking between specific body
spaces

— Logistic regression to understand hypoglycemic
adverse event dose response

— Population pharmacokinetics
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[Systems Biology Model of Abeta
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_sion Model of Hypoglycemia
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-Pharmacokinetics Analysis (1)

ldentify best “base” model, which captures concentration time
profile of subjects, and includes relevant between subject and
residual variability

Identify non-collinear patient-specific covariates based on
physiology and/or pharmacology, e.g., creatinine clearance on
drug clearance, body size on clearance and volume of
distribution, dose on absorption rate constant, concomitant
medication on clearance to assess DDIs

Advocate full model approach, all covariates on base model,
estimate and bootstrap, clinical significance of covariate from
confidence interval assessment

Diagnostic plots to evaluate each step

Perform visual predictive check to assess overall model
performance, ability to simulate data from which model was
built

13
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Case Study #1:
Estimate Target Performance
Pioglitazone

15



* Quantify magnitude (uncertainty) and time frame
of HbAlc- and FPG-lowering effects of the TZD
(thiazolidinediones) class of diabetic agents

* Effect thought to be mediated through activation
of the peroxisome proliferator-activated receptor
gamma (PPARYy), improving insulin sensitivity

* Aggregate data obtained from placebo-controlled
trials, including pioglitazone and rosiglitazone

— Pioglitazone (Actos): 8 literature sources, 28 active
treatment arms with 147 total data points

— Rosiglitazone (Avandia): 9 literature sources, 25 active
treatment arms with 125 total data points

16



| Methods (1

* Longitudinal modeling of data was
implemented to provide information on time-
frame of response, Emax model characterized
magnitude of response

 Data observed to 26 weeks, predictions made
to 52 weeks using final longitudinal model

 Model accounted for placebo response over
time (disease progression) in addition to drug
effect (dose) over time

* Results presented are placebo-adjusted
change from baseline values

17



| Methods (2

* Intrinsic activity assumed to be similar in
class, attempts made to tease out potency
differences between pioglitazone and
rosiglitazone

 Accomplished by estimating pioglitazone EDso
with scale factor characterizing the relative
potency of rosiglitazone

* Focus of analysis was pioglitazone (target
performance), rosiglitazone data added to
improve model stability

 Baseline effect estimated, normalized to a
HbA1c value of 8% and FPG value of 120
mg/dL

18



Alc Effect by Week

Pioglitazone WK=4 Pioglitazone WK=8 Pioglitazone WK=12

PBO-Corr %ICFB HbA1C

PBO-Cor LB HoAIc
1. . 0. )

|

l

|

l

l
PBO-Cor B HoAIC

o | ] = A — Dashed lines
represent
0 0 0
F_I | | | | FI_I | | | | FI_I | | | | _O'S%and
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 _1 O% as
Dose (mg) Dose (mg) Dose (mg) -
reference

Pioglitazone WK=16 Pioglitazone WK=26 Pioglitazone WK=52

PBO-Corr %CFB HoAIC

PBO-Corr %CFB HoAIC

PBO-Corr %CFB HoAlIC

0O 10 20 30 40 0O 10 20 30 40 0 10 20 30 40
Dose (mg) Dose (mg) Dose (mg)

19



PBO-Cor ¥£CFB HbA1c

0.0

05

-1.0

-1.5

Pioglitazone 30 mg vs. Time

Regimen Max Response = -1%

| | | | |
10 20 30 40 50

Time (wk)

poral Profile of HbAlc

Red line represents
expected
pioglitazone 30 mg
mean (90% Cl) HbA1c
response

20



IResults (3): HbALc Lowering
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G Effect by Week
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-poral Profile of FPG
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[Results (6): FPG Lowering

-19
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* Longitudinal Emax model adequately
described HbA1lc and FPG CFB data

* Rosiglitazone estimated to be ~8-fold more
potent than pioglitazone in HbAlc/FPG
lowering

* All placebo-corrected, HbAlc and FPG CFB
confidence intervals exclude zero, significant
lowering effect

* Target profile for TZD-like drug, 1-year
— HbA1c: -1.03% (-1.32, -0.79)
— FPG: -37 mg/dL (-44, -32)
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Case Study #2
HbAlc Lowering Performance

26



" Backgrount

e Study conducted (12-week) testing
mechanism of glucose lowering/HbA1c
reduction

* Resultant study data modeled, providing
estimates of maximal effect, potency,
baseline effect on Emax and temporal profile
of efficacy endpoints

 Make a statement regarding expectation of
mean response, and uncertainty of that
response

* Generate probability of attaining marginal
difference of endpoint 27
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Individual longitudinal data, Emax model was fitted
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| Methods (3

* Longitudinal Emax dose-response model fitted
to observed HbA1lc data (observed cases, not
LOCF)

* Final model point estimates of relevant model
parameters and covariance matrix used to
simulate 10,000 vectors of parameter space

* Response for relevant doses generated from
simulated parameter vectors

* Confidence intervals generated to characterize
uncertainty in response and probability of
achieving a clinically relevant reduction in
HbA1c also calculated
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e 1,000 clinical trials simulated, difference
between test drug and lead competitor
generated, varied by number of subjects per trial

* For each simulated trial, the 95% Cl of the
difference between the two treatments was
calculated (drug — competitor, negative favors
test drug)

e The outcome was classified as:

— Superior if upper 95%Cl < 0 as drug is significantly better
than competitor ( )

— Non-inferior if upper 95%Cl < 0.3 | + blue, anything
superior is also non-inferior)

— Inferior if lower 95% Cl > O (if significantly worse than
competitor but also non-inferior is not classified as inferior)

(red)
— Inconclusive is none of the above ( )
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IResults (1): 12-Week performance

Predicted
Mean

Response
(%)

Dose (mg)

1 -0.49
5 -0.64
10 -0.67
25 -0.70

80% ClI

-0.65, -0.31

-0.78, -0.50

-0.81, -0.53

-0.84, -0.55

* Longitudinal Emax

dose-response model
results used to
generate dose-
specific mean HbAlc
reduction with
uncertainty expressed
as an 80% CI

Assumes baseline
HbA1lc of 8% (study
entry inclusion
criteria)

32



PResults (2): 12-Week riTarget]

Baseline
HbA1c

7.75%

Pr (£-0.6%)

Pr (<-0.7%)

8%

Pr (< -0.6%)

Pr (£-0.7%)

smg

0.433

0.133

0.648

0.291

0.557

0.203

0.753

0.406

0.630

0.271

0.807

0.489

* Probability

of
achieving a
clinically
relevant
HbAlc
reduction
of 0.6% or
0.7%,
conditional
on baseline
HbA1lc level
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IResults (3): 24-Week performance

Predicted
Mean

Response
(%)

Dose (mg)

1 -0.60
S} -0.78
10 -0.82

25 -0.85

80% ClI

-0.80, -0.38

-0.96, -0.61

-1.00, -0.65

-1.03, -0.67

* Longitudinal Emax

dose-response model
results used to
predict dose-specific
mean HbAlc
reduction with
uncertainty expressed
as an 80% CI

e Assumes baseline

HbA1lc of 8% (study
entry inclusion
criteria)
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[Results (4): 24-Week Pr(Target
Baseline of

HbA1c 5mg achieving a
clinically
7.75% relevant
HbAlc
Pr (< -0.6%) 0.815 0.879 0.6906 reduction
Pr (< -0.7%) 0.540 0.649 0.713 of 0.6% or
0.7%,
8, conditional
on baseline
Pr(<-0.6%)  0.907 0.948 0.961 HbAlc level

Pr (< -0.7%) 0.727 0.813 0.853
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_ Decision Criteria
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' Conclusions

* Longitudinal Emaxmodel adequately described
individual %CFB HbA1c

* The 5,10 and 25 mg doses appear to be similar
with respect to HbAlc lowering effect at 12
weeks

* Probability of achieving at least a 0.6% placebo-
adjusted CFB reduction in HbAlc at 24 weeks
(registration trial length) appears to be >90% for
the 5, 10 and 25 mg doses, with a baseline
HbAlc of 8%

* If a head-to-head trial were run, with at least
80% probability of showing non-inferiority, need
~200 subjects (100/arm) at 5 or 10 mg 38
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Concentration Result

Too low Lack of efficacy
Correct Desired therapeutic effect
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CORE CONCEPTS

*\VVolume of distribution
Elimination half-life

eClearance



AMOUNT

CONCENTRATION =
VOLUME
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VOLUME OF DISTRIBUTION

e Isimaginary
e Does not tell you where the drug is

e |s not the sum of anatomic volumes
of sites of uptake

e Quantitatively reflects peripheral tissue uptake

e Is related to lipid solubility
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.. dose = 2 mg
Concentration = 14.3 ng/ml
V4 = 140 Liters

= 2.0 Liters/kg (in a 70-kg person)
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LINEAR vs. LOGARITHMIC CONCENTRATION SCALE

Linear Logarithmic

Visual image Correct Distorted

Graphically-based
calculations Dangerous Possible
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YOU CAN'T DRAW PICTURES
OF CLEARANCE
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CLEARANCE

e Independent variable best describing
the capacity for drug removal

e Most have units of volume/time

e Usually accomplished by a clearing
organ

e Upper limit: blood flow to clearing
organ

16
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COMPLIANCE

- Acting In accordance with another’'s command,
demand, request, rule, or wish

- Acquiescence

- Disposition or tendency to yield to others

ADHERENCE

- Faithful attachment, devotion
- Close following

- Carrying out without deviation

18



CONCENTRATION

10 A

HIGH AUC,
HIGH SYSTEMIC EXPOSURE,
LOW CLEARANCE

10 ~

LOW AUC,
LOW SYSTEMIC EXPOSURE,
HIGH CLEARANCE
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PLASMA CONCENTRATION

Cmax

HOURS AFTER DOSE



QUANTITATIVE MEASURES

C.x - Peak plasma concentration

Tax - TIme of peak concentration

AUC : Area under the plasma concentration curve
(systemic exposure)
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Rate of absorption Crhax T hax
Rapid High Short
Slow Low Long
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T

Plasma
Concentration

Time After Dose —»
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SYSTEMIC AVAILABILITY
(ABSOLUTE BIOAVAILABILITY)

F =

(AUC values must be total, not truncated)
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Drug F

Diazepam >0.90

Alprazolam >0.90
Acetaminophen 0.80
Zolpidem 0.70
Eletriptan 0.50
Triazolam 0.45
Midazolam 0.30

Ramelteon 0.02




RELATIVE ORAL BIOAVAILABILITY

AU Ctest product

Relative F =
AUCreference product

27



BIOEQUIVALENCE OF GENERIC DRUGS

Fundamental premise:
Bioequivalence
Implies

Therapeutic equivalence

28



GENERIC SUBSTITUTION
e |s part of the landscape
e Cannot be blamed for clinical

changes without plasma level
documentation
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PLASMA CONCENTRATION

DOSE =D, INTERVAL = Ty,

15
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INTERDOSE FLUCTUATION

“Up and down” variation in plasma level,
determined by how the total daily dose Is
divided Into discrete doses.
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Serum Concentration

25

20

i P 500 mg Every 24 Hours

= e e — o — --'_—-ll-l-——_-—_-l——-d——q-_—

250 mg Every 12 Hours
125 mg Every Six Hours

Therapeutic
Range

0 6 12 24

Hours
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COMPLIANCE WITH
ANTICONVULSANT THERAPY

Doses
Per day % compliance
1 87%
2 81%
3 7 7%
4 39%

JAMA 1989; 261: 3273
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“Slow-release” preparations blunt the
peaks, allowing less frequent dosage.

35



14 -

Mean Plasma Concentration (ng/mL)

Clinical Therapeutics 1996; 18:95-105
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Physician

. «------Compliance
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Clearance SS

Physiology
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PERCENT
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DRUG ACCUMULATION

e Not the same as C_. or C_,

e A relative term: exposure at steady-
state compared to first dose

e Depends on the relation between dose
Interval (T) and t.,

41



If T >>t,, not much accumulation.

If T <<t,, alot of accumulation.
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PLASMA CONCENTRATION

Drug Metabolism Reviews 1983; 14: 251-292

l1/2=72 hours

§

i|/2=8 hours
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GIVEN THE PREVALENCE OF
POLYPHARMACY, CLINICALLY IMPORTANT
DRUG INTERACTIONS ARE UNUSUAL

44



eRequire increased vigilance or monitoring

eRequire dose adjustment

eRequire avoidance of a drug

eAre hazardous or life-threatening

45



Drug-Drug Interactions and Pharmacogenomic Variation as
Sources of Clinical Pharmacologic Variability:
Principles and Evaluation in Drug Development

Karthik VVenkatakrishnan, Ph.D



Evaluating Clinical Pharmacologic Variability in
Drug Discovery, Development, Regulation and Utilization

1. Identify sources of variability 3. Assess clinical significance
2. Quantify (estimate) effect 4. Guide risk management and prescribing

Extrinsic

I Drug—drug interactions

Efficacy Curye

Intrinsic

: =)
Environment Age Smoking/ a
T diet =
Organ dysfunction 0 B
Disease Q . b
CL ) il . & 1
Pregnancy/lactation 2 h¢rapeutic Range
Medical Gender Alcohol o
practice use Safety (Adverse Effect) Curve

Others

-

Dose, AUC, or Concentration (PK)
[Exposure]

——

Regulatory

Huang SM and Temple R. Clinical Pharmacology and Therapeutics. 84(3): 287-294, 2008

Huang SM and Lesko LJ. Journal of Clinical Pharmacology. 44: 559-569, 2004 )



Drug-Drug Interactions

A clinically significant drug-drug interaction (DDI) occurs when
the therapeutic or toxic effects of a medication are altered by
administration with another drug.

Mechanistic Classification
— Pharmacokinetic Interactions

* Drug X alters the absorption (A), distribution (D), metabolism (M) or

elimination (E) of Drug Y resulting in altered blood/ target organ levels
leading to potential effects on efficacy and/or safety

— Pharmacodynamic Interactions

» Drug X alters the pharmacologic effect (efficacy and/or safety) of Drug
Y without affecting its pharmacokinetics




Pharmacogenomic Variation

Genetic polymorphisms can alter the activity and/ or expression of
molecular determinants of pharmacology (PK or PD), thereby
Influencing the therapeutic and/ or toxic effects of a medication

Examples of Molecular Mechanisms
— Single Nucleotide Polymorphisms
» Coding Regions (Synonymous vs. Non-synonymous)
» Noncoding regions (e.g., Promoter/ Enhancer; Intronic)
— Insertions and Deletions
— Copy Number Variation (CNV)

Categories of Pharmacogenomic Variation
— ADME Pharmacogenomics
» Germline genomic variation -- drug metabolizing enzymes/ transporters
— Target Pharmacogenomics
« Germline variation -- drug targets/ pathways relevant to efficacy or safety

« Somatic variation in cancer genome (Oncology)
» Genetic variation in microbial genome (Infectious diseases)



Absorption Pharmacodynamics

S —— T
| Distribution Free Drug at
\Disinte-gratioh | & Transport Target Site(s)
v Intestinal

’ mmm ptake/ Efflux :
=.=." [ Transport | Metabolism

I g
Dissolution ;p
‘ ‘» 74
prug in X @
solution X——

% Hepatic

Protein

o Kidney
Binding

) Systemic
‘ : TUptake Circulation
‘ ranspor
g P Renal Tubular

\

Intestinal Transport
Metabolism ; -y
Intestine N Excretion (biliary, renal)
Hepatobiliary Secretory Transport
EnterohepatiC 5

Recirculation



Clinically Important Drug Metabolizing Cytochromes P450
Selected examples of Clinically Significant
Substrates, Inhibitors and Inducers of CYP3A

CYP3A Inhibitors CYP1A2 CYP3A Inducers
(“Ketoconazole CYPBO «-. (" PXRI CAR activators
Itraconazole CYP2C8 Smm—ee T Rifampin
Voriconazole CYP2C9 <------------ Carbamazepine
P(_)sacon_azole CYP2C19<----__ Phenytoin
Ritonavir* henobarbital
Clarithromycin* \Q\CYP2D6 /o/ : pe
Verapamil* CYP3A4/5 & >t Jonn's Wort J
Diltiazem*
Erythromycin*
Fluconazole

\Grapefruit Juicey

CYP3A Substrates

Midazolam, Alprazolam, Pimozide, Quetiapine, Nifedipine, Simvastatin, Atorvastatin,
Cyclosporine A, Tacrolimus, Sirolimus, Sildenafil, Everolimus, Vincristine, Docetaxel
(~50% of clinically used small molecule drugs are metabolized by CYP3A)

*Mechanism-based inactivator (time-dependent inhibitor) 6
TIntestine-selective CYP3A inhibitor



PLASMA TRIAZOLAM (ng/mi)

Examples of CYP3A Inhibition DDI

Effect of Ketoconazole on Triazolam vs. Alprazolam PK

Triazolam Alprazolam
6r 6 r
4 'E‘a; @
2t LH'Ih., E ot

/‘ hh'"'-. Z TI"I'
WITH = L
1t KETOCONAZOLE "'-l é
o | < .
,H: COMTACL E
= 5
0.2 E
0o
1

2

O 8 12 18 24 30 35 42 48 O & 12 18 24 30 36 42 48

HOURS AFTER DOSE HOURS AFTER DOSE
Cmax: 2.1-fold T Cmax: 1.1-fold T
AUC: 14-fold T AUC: 4-fold T
t,,; 6-fold 1 ty,: 4-fold T

Greenblatt DJ et al., Clin Pharmacol Ther. 64: 237-47, 1998



Midazolam (ng/ml)

Midazolam — Rifampin Interaction

12

-
==

Examples of CYP3A Induction DDI

&0

Rifampin

5.0

4.0

30

20

C5A dose (mg day'kg™! body weight)

Time (hr)

Cyclosporine A — St. John’s Wort Interaction
Effect on Dose requirement

- PE  SMW coadministration PE

l 600 mg day~!

I 5 El 12 15 |9 23 30
Study day

Kharasch ED et al., Clin Pharmacol Ther 76:452-66, 2004 g
Bauer S et al., Br J Clin Pharmacol 55: 203-211, 2003



CYP2D6 Genetic Polymorphisms

CYP2D6 is one of the best characterized drug-metabolizing enzymes
with clinically important genetic polymorphisms

Multiple alleles result in a spectrum of activity depending on the
specific diplotype in an individual

— Extensive metabolizers (EM) — “normal” activity (AS 1-2)

— Intermediate metabolizers (PM) — reduced activity (AS 0.5)

— Poor metabolizers (PM) — virtually absent activity (AS 0)

— Ultrarapid metabolizers (URM) — increased activity (AS > 2)

CYP2D6 allele frequencies differ between racial/ ethnic groups
resulting in corresponding differences in PM/ URM frequencies.
— PM: 6-10% of Caucasians, 2% of Asians, ~10% of African Americans

— URM: 1-10% in Caucasians, substantially higher (16-28%) in North African/
Middle Eastern populations.



Examples of Clinical Implications of
CYP2D6 Pharmacogenetics

Clinical Pharmacogenetics Implementation CYP2D6 Genotype Information to Guide Pimozide Treatment
Consortium (CPIC) Guidelines for Codeine in Adult and Pediatric Patients: Basis for the US Food and Drug
Therapy in the Context of Cytochrome P450 2D6 Administration’s New Dosing Recommendations
Hobart L. Rogers, PharmD, PhD: Atul Bhattaram, PhD; Issam Zineh, PharmD, MPH:

(CYP2D6) GenOtype togarao Gobburu, MBA, PhD; Mitchell Mathis, MD; Thomas P. Laughren, MD;
KR Crews!, A Gaedigk?, HM Dunnenberger?, TE Klein*, DD Shen*®, J T Callaghan”#, ED Kharasch? and Michael Pacanowski, PharmD, MPH
and TC Skaar”

e Codeine

— Bioactivated to morphine via CYP2D6 mediated metabolism
— URMs at increased risk for morphine toxicity; PMs at risk for inadequate analgesia.
— CPIC guidelines recommend avoiding codeine use in URMs and PMs

 Pimozide
— CYP2D6-mediated metabolism is a major contributor to overall clearance
» Population PK model-based oral clearance: 55 L/hr in EM and 15 L/hr in PM
— Pimozide produces concentration-dependent QT prolongation.
— USPI revised to require CYP2D6 genotyping at doses > 4 mg/d
— Maximum dose of 4 mgq is specified for PMs (vs. 10 mg for IM/EM patients)

Crews KR et al., Clinical Pharmacology and Therapeutics . 91: 321-6, 2012.10
Rogers HL et al., Journal of Clinical Psychiatry. 73: 1187-90, 2012.



Drug Transporters
Emerging Molecular Determinants of Drug-Drug Interactions

Hepatocytes

Intestinal epithelia
0AT2 CATP1B1 OATP281
7 DATFIE3

Ao intestine . AT NTCP
QATR
@ + FEFTI
ASET

O5Ta

05T =
£ Dﬂﬂ*—.:”‘ MCTI
KRP2

MRP3 4—‘— o

P4gp

e

Kidney proximal tubules

Blood Uring
Blood-brain barrier
ORTPHC CAT4 Brain Rasalateral
LURATY ] 1
oCT2
PEFT), PEPT
Brain capillary endothelial cells
DAT1 MRF2
MATE L, MATEZ-I, MATEZ BCRF  MRP4
DAT2
P-gp
DAT3 e el Bloocl Apical/uminal
' DATPIA2 OKTRIRI
Zamek-Gliszczynski et al., Clin Pharmacol Ther. 92: 553-556, 2012
Giacomini et al., Nature Rev. Drug Discov. 9: 215-236, 2010 11




Plasma pravastatin (ng/mL)

Pravastatin-Cyclosporine DDI

200 71 _

150 —

100 —

Transporter DDI and Pharmacogenomics:

/

OATP1B1 as an lllustrative Example

Effect of ¢.521T>C SNP
on simvastatin Acid PK

CCvs. TT: 3.2-fold 1 in AUC

10 mg pravastatin in patients on ]
CsA-based immunosuppression 6 -
5 -
- - - - 4 N
10 mg pravastatin in patients with
Familial Hypercholesterolemia 3
. 2 ]
10-fold 1 in AUC
1 -
t,;, unchanged
= i : T T T T ! T ]
| | I | I I | I I | 0 1 2 8 4 5 7 9 [ 3
6 8 10Tim‘::(h}14 16 18 20 22 24 Time (h)

Hedman M et al., Clinical Pharmacology and Therapeutics. 75: 101-109, 2004.
Pasanen MK et al., Pharmacogenetics and Genomics. 16: 873-9, 2006.

Niemi M et al., Pharmacological Reviews. 63: 157-181, 2011. 12



—~Log;o P Value

OATP1B1 ¢.521T>C SNP and Statin Myopathy
Illustration of Genomewide Association Approach

In strong linkage disequilibrium

20

With rs4149056 (¢.521T>C) _ CC:18.6%
\ £
8- 4363657 ——>* :E
P=4x10-° L]
7 E 151
61 -
=
5 R
2
-
. B ) | e E 5
8 9 10 Il 12 13 :14 15 117 1819202122 X %
Chromosome E CT 2 . 8%
80 mg/d simvastatin d TT:06%
« 85 cases with myopathy T 1 @ 3 & 3 &
Years since Starting 80 mg of Sinmeastatin
* 90 controls
Odds Ratio
(95% Cl)
TT/CT/CC C Allele Frequency Odds Ratio (95% Cl) per C Allele forCCvs. TT
No. of No. of No. of No. of
cases controls cases controls I
29/35/21 70/17/3 0.45 0.13 | e 45 169 (4.7-611)
— I I T I [ 1
N=85 N=90 0.5 1.0 2.0 5.0 10.0 20.0
13

SEARCH Collaborative Group, Link E et. al., New England Journal of Medicine. 359: 789-799, 2008.



Assessment of Drug-Drug Interactions in Drug
Development

14



Drugs Withdrawn from the U.S. Market due to DDIs (1998-2003)
Impact on Contemporary Drug Development

e Mibefradil

— Mechanism-based CYP3A inhibitor and P-gp inhibitor
— 26 drugs spanning several therapeutic areas contraindicated
— Withdrawn within a year of approval

o Terfenadine, Astemizole, Cisapride
— Sensitive CYP3A Substrates and HERG inhibitors

« Cerivastatin
— Rhabdomyolysis and fatal drug interactions with gemfibrozil

—> Increased focus on DDI risk assessment in drug discovery and development
—> Experimental in vitro models of DDIs to guide clinical risk assessment
—> Mathematical models of in vitro to clinical predictions of DDI magnitude

—> Comprehensive regulatory guidances (US and EU) and scientifically guided
translation of DDI information into prescribing guidance

—> Strong commitment (academia, industry, regulators) to continually update
current opinion based on emerging science

1
Lo

Huang and Lesko, J Clin Pharmacol. 44: 559-69, 2004



Draft US FDA Guidance (2012) and
EMA Guideline (2012) Documents

Guidance for Industry

Drug Interaction Studies —
Study Design, Data Analysis, Implications
for Dosing, and Labeling
Recommendations

DRAFT GUIDANCE

This puidance document is being distributed for comment purposes only.

Comments and sugpestions regarding this draft doonment should be subrmitted within 90 days of
publication in the Federal Resster of the notice announcing the svailability of the draft
mudance. Submmit comments 1o the Division of Dockets Mmagemens (HFA-305), Food and
Dimug Administration, 5630 Fishers Lane om 1061, Rockoille, M 20852, All conmnents
should be identified with the docket mumber listed in the notice of svailability that publishes in
the Foderal Resisrar.

For questions regarding this draft document contsct (CDER) Shiew-Dei Husne, 301-796-1541,
or Lei Zhang, 301-794-1635

U.5. Department of Health and Huoman Services
Food and Drug Administration
Center for Drug Evaluation and Besearch (CDER)

February 2012
Clinical Pharmacology

O
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Guideline on the investigation of drug interactions

Discussion In the EMoacy Working Party (EWP)

JuneyOcinber 15996
Febwuary 1997

Traremisshon to the CPHP March 1597
Trarsmissiosn o inberested partes March 1957
Deadine for comments September 1997
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Agproval by the CPMP

December 1957
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Adoption Rev. 1 by CHHF for refaase for consultation 22 &gl 2010
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31 Dtvbesr 2010
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Febwuary 2013
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34 Junae 30432
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http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm292362.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf 14
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CYP Inhibition DDI Risk Assessment: Case Study
Effects of terbinafine on CYP2D6 and CYP3A4/5
activities in human liver microsomes

Therapeutic Range

 Terbinafine vs. CYP2D6: [I]/Ki >> 1
— Interaction Likely

— Inaclinical DDI study, terbinafine
Increased AUC of the CYP2D6
substrate desipramine by ~ 5-fold

100 -
—&— Dextromethorphan O-d

® Midazolam 1'-hydroxyl
80

60 -

40 A

Percent of control activity

 Terbinafine vs. CYP3A: [I]/Ki < 0.1:
— Remote possibility of interaction

0+ - - - - - — Inaclinical DDI study, terbinafine
0.0 0.1 1 10/ 100 1000

20 A

did not affect the AUC of the
CYP3A substrate midazolam

Terbinafine Concentratiory (uM)

CYP2D6 CYP3A
IC5, 0.041 pM IC5, >300 pM

18
In vitro data from J Pharmacol Exp Ther. 316:336—-348, 2006



Translation to Therapeutics — Scenario 1

Patient on a stable dose of Metoprolol for hypertension,

requiring systemic antifungal therapy for onychomycosis.

Metoprolol clearance is
primarily via metabolism
by CYP2D6

Terbi e Isa
CYP2 hibitor

T metoprolol exposure
can result in bradycardia and
decreased cardioselectivity
of B-blockade

CYP2®6Anhibitor

v

Consider Itraconazole instead of Terbinafine | 19




Translation to Therapeutics — Scenario 2

Patient on a stable dose of Simvastatin for dyslipidemia,

requiring systemic antifungal therapy for onychomycosis.

Simvastatin clearance is
primarily via metabolism
by CYP3A4

inafife 1s not a
Mhibitor

T simvastatin exposure
can result in 1 risk of
rhabdomyolysis

Itracona IS a
strong CY, 4 inhibitor

Consider Terbinafine instead of Itraconazole | *




Recent Scientific Advances in the Quantitative Predictions
of Clinical DDIs from In Vitro Data

2008-2009

Vol. 37, No. &
26252/3480431
Printed in US.A

DruG METABOLISM AND DISPOSITION
Copyright @ 2009 by The American Society for Pharmacology and Experimental Therapeutics
DMD 37:1658-1666, 2009

Comparison of Different Algorithms for Predicting Clinical Drug-
Drug Interactions, Based on the Use of CYP3A4 in Vitro Data:
Predictions of Compounds as Precipitants of Interaction®

Odette A. Fahmi, Susan Hurst, David Plowchalk, Jack Cook, Feng Guo, Kuresh Youdim,
Maurice Dickins, Alex Phipps, Amanda Darekar, Ruth Hyland, and R. Scott Obach

» Example of application to Cabazitaxel
 Produced CYP3A inhibition in vitro
C

max

2010-2011
Applications of Physiologically Based
Pharmacokinetic (PBPK) Modeling and
Simulation During Regulatory Review

P Zhao!, L Zhang', JA Grillo', Q Liu', JM Bullock!, Y] Moon!, P Song!, S§ Brar!, R Madabushi',
TC Wu!, BP Booth!, NA Rahman!, KS Reynolds!, E Gil Berglundl, L] Lesko! and S-M Huang!

CLINICAL PHARMACOLOGY & THERAPEUTICS www.nature.com/cpt

/K, > 0.1 -- DDI risk with CYP3A substrates could not be dismissed as unlikely

» PB-PK model-based simulations predicted <1.1-fold increase in midazolam exposure
» Model-based predictions concluded lack of clinically relevant CYP3A inhibition to
support labeling without need for a clinical DDI study

Fahmi et al., Drug Metab Dispos., 37(8):1658-66, 2009
Zhao et al., Clin Pharmacol Ther 89:259-6, 2011
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Study Design and Data Analysis Considerations

Ensure adequate number of subjects to estimate DDI magnitude or genotype
effect (e.g., AUC ratio) with adequate precision.

Inference based on interpretation of 90% confidence intervals of DDI
magnitude rather than p-values.

Study AUC,/AUC, p-value Interpretation
Geometric Mean Ratio
(90% CI)
A 0.91 (0.85, 0.98) <0.05 Not clinically
significant
B 1.15 (0.60, 2.2) >0.1, NS Inconclusive

Considerations in design of PG-PK association studies
— Frequency of genotypes of interest (e.g., EM vs. PM sub-populations)
— Expected effect size (e.g., from in vitro drug metabolism data)
— Prospective genotyped cohorts vs. Retrospective Analysis
— Integration of genotype as a covariate in population PK analyses

— Informative PK sampling schemes 99



CONCENTRATION

Determinants of Clinical Significance
of a Drug-Drug Interaction

1. Interaction Magnitude
2. Therapeutic Index of Object/ Victim Drug

Scenario 1
Interactions Not Clinically Significant

+ Inhibitor

*
w

1Not effective

TIME

CONCENTRATION

Scenario 2
A Clinically Significant Interactions

+ Inhibitor

TIME

23

Adapted from Greenblatt DJ and Shader RI, Pharmacokinetics in Clinical Practice, 1985



Scenarios/ Examples Illustrating Applications of
Concepts in Drug Development Settings

24



Scenario 1: PB-PK Model-Based Risk Assessment

Investigational Agent Entering First-In-Human Clinical Development in a
Patient Population Likely to be on Multiple Concomitant Medications

i [ STRONG CYP3A INHIBITOR \¢
a2 4| Projected Fold 1 in AUC 7p)
2 Mean (5!-95% percentile —
S 10 I 220 (1.2, 4.4) ™ I X
5 = 07
2 IO
&
. . 8
In Vitro Metabolic Phenotype o
CYP1A2 BE ; ; : f ; 5 s PR BEA s S0 BB e e x|
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
B CYP2D6 Fold-increase in Exposure by a Strong CYP3A Inhibitor
@ CYP3A4 14
12 4 - STRONG CYP1A2 INHIBITOR
o Projected Fold 1 in AUC
801 NS Mean (5™-95% percentile)
] 1.38 (1.1, 1.9)
- 8 N
o Q
S N
TR
o
| Xtm
0 Y t M‘ |
1.0 15 20 25 40 80
Fold-increase in Exposure by a Strong CYP1A2 Inhibitor
25

Venkatakrishnan K et al., Clinical Pharmacokinetics 49(11): 703-727, 2010



Scenario 1: DDI Risk Management in Clinical Development
Investigational Agent Entering First-In-Human Clinical Development in a
Patient Population Likely to be on Multiple Concomitant Medications

» Excluded concomitant medications in FIH trial
— Strong and moderate inhibitors and inducers of CYP3A
— Strong inhibitors and inducers (e.g., heavy smoking) of CYP1A2

« Simulations support lack of need for excluding CYP2D6 PMs

« DDl simulations and risk assessment to be updated using observed clinical
PK in FIH study
— Will guide ketoconazole DDI study design (e.g., NME dose selection) based on
» Projected magnitude of DDI and associated inter-subject variability
 Clinical safety profile and Therapeutic Index in Phase 1

26
Venkatakrishnan K et al., Clinical Pharmacokinetics 49(11): 703-727, 2010



Scenario 2: Integrating DDI Results with PK/Safety Relationships
CYP3A Substrate NME with potential for dose-related QTc prolongation

Mean Cmax S at highest Ph 2/3 dose

Crnax.ss IN the presence of ketoconazole *  PK/QTc model-predicted AQTCF at
‘ Tt the highest Phase 2/ 3 dose

o T Male — 0.8ms (95% Cl: 0.4 -1.2)

o Female

475

450

« Ketoconazole DDI study showed
~2-fold increase in NME exposure

425

 PK/QTc model-predicted AQTCcF at
T, at the highest Phase 2/ 3 dose
under strong CYP3A inhibition

— <2 msec
— << 5ms ICH E14 threshold

400 -

[vele}

375

350

QTcF Interval Length (msec)

Slope =0.12 msec/(ng/mL) «  Enabled conclusion that clinically
95% ClI: (0.04, 0.16) significant QT prolongation is

unlikely over the proposed Ph 2/3

‘ ‘ l l l l ‘ dose range even in the context of a

¢ 2 %M 80 0 080 90 1 pP) with a strong CYP3A inhibitor

Serum concentration (ng/mL)

325

300
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Translating Clinical DDI Results to Prescribing Guidance
Illustration with Everolimus (Afinitor®)

Sensitive CYP3A4 substrate
Recommended Dosage in multiple oncology indications™ = 10 mg QD

* Advanced HR+ BC, advanced PNET, advanced RCC, or renal angiomyolipoma with TSC

Ketoconazole -
15.0
Erythromycin e
y y 47
Verapamil Hed
3.5
Rifampin o
0.37
0.1 025 05 1 152 3 45 10 1520

Ratio of Geometric Mean AUC (Test/ Reference) and 90% Cl

Kovarik JM et al., Biopharmaceutics and Drug Disposition 27: 421-6, 2006 28
Afinitor® United States Prescribing Information (Revised 08/2012)



Integrated Approach to DDI and PGx in Drug Development

“‘lll...’ _____
‘ Other sources *

{ of PK or PD

*e, Variability_, '& *U

..llll‘

Targ t Proteins LABELING

Assess clinical
. EXHOSURE significance via
Pharmacogenetic Fp PK/PD integration

Variability (E-R for efficacy and safety)
DME’s, transporters, Clearance Extend mechanism-based

PD targets MecHanisms mference of DDI risk to other drugs

I n vitro metabolism studies|Clinical DDI studie
In vitro DDI risk assessmentpG-PK Association
ADME Human ADME study Population PK

- L 2
Proteins Q..-“V

Pharmacokinetic DDI I IDENTIFY MOLECULAR DETERMINANTS
Inhibition/ induction of I RATIONALIZE CLINICAL STRATEGY
CYP&tmnxman’aQ — — I ELMMNATEUNNECES&M@YS“HNES

1 DOSE INFORM STUDY DESIGN 29
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Venkatakrlshnan K. In Encyclopedia of Drug Metabolism and Drug Interactions, 2012.
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